ELECTRICAL MATHEMATICS TEST 1 – TRIAL TEST/ASSIGNMENT

Notes:

- This test covers order of operations, fractions, significant figures, rounding, percentages, calculator usage, scientific/engineering notation, SI units, errors, approximations.
- The final test will be closed book, calculator permitted.
- It is ESSENTIAL to show working/steps, where asked, otherwise no marks can be given.
- Calculate the following, manually.

a.
$$2-4+5\times6-3=2-4+30-3=-2+30-3=-2+27=25$$

b.
$$15(5-2) + 10/5 - 4 = 15 \times 3 + 2 - 4 = 45 + 2 - 4 = 47 - 4 = 43$$

c.
$$(8/2-3\times2+10)/2 = (4-6+10)/2 = (-2+10)/2 = 8/2 = 4$$

d.
$$12-20/(10-5)=12-20/5=12-4=8$$

2. Calculate the following, manually, showing all steps.

a.
$$\frac{5}{4} - \frac{5}{8} = \frac{5 \times 2}{4 \times 2} - \frac{5}{8} = \frac{10}{8} - \frac{5}{8} = \frac{10 - 5}{8} = \frac{5}{8}$$

b.
$$\frac{3}{7} \times \frac{5}{8} = \frac{3 \times 5}{7 \times 8} = \frac{15}{56}$$

$$c. \frac{\frac{1}{4} + \frac{2}{3}}{\frac{1}{5}} = \frac{\frac{1 \times 3}{4 \times 3} + \frac{2 \times 4}{3 \times 4}}{\frac{1}{5}} = \frac{\frac{3}{12} + \frac{8}{12}}{\frac{1}{5}} = \frac{11}{12} = \frac{11}{12} \cdot \frac{1}{5} = \frac{11}{12} \times \frac{1}{5} = \frac{1}{12} \times \frac{1}{5} = \frac{1}{12} \times \frac{1}{5} = \frac{1}{12} \times \frac{1}{12} \times \frac{1}{5} = \frac{1}{12} \times \frac{$$

d.
$$3\frac{2}{5} \times 2\frac{5}{8} = \frac{17}{5} \times \frac{21}{8} = \frac{17 \times 21}{5 \times 8} = \frac{357}{40} = 8\frac{37}{40}$$

e.
$$3\frac{2}{5} + 2\frac{5}{8} = (3+2) + \frac{2}{5} + \frac{5}{8} = 5 + \frac{16}{40} + \frac{25}{40} = 5 + \frac{41}{40} = 5 + 1 = 6 = 6$$

f.
$$\sqrt{\frac{9}{16}} = \frac{\sqrt{9}}{\sqrt{16}} = \frac{3}{4}$$

g.
$$\sqrt{5\frac{4}{9}} = \sqrt{\frac{49}{9}} = \frac{\sqrt{49}}{\sqrt{9}} = \frac{7}{3} = 2\frac{1}{3}$$

h.
$$\frac{4}{5} \div 3 = \frac{4}{5} \times \frac{1}{3} = \frac{4}{15}$$

i.
$$\sqrt{60+4} = \sqrt{64} = 8$$

j.
$$\frac{3}{4} \div \frac{5}{7} = \frac{3}{4} \times \frac{7}{5} = \frac{21}{20} = \frac{1}{20}$$

3. Complete the following table by filling in the blanks:

	Usual Decimal	Scientific Notation	Engineering Notation
a.	510.0	5.1 × 10 ²	510.0
b.	75 000	7.5 x 10 ⁴	75×103
c.	33 000 000	2.2x 107	22 x 10 ⁶
d.	0.0000022	2.2 × 10-6	2.2 × 10-6

4. Perform the following calculations, manually, showing the steps taken:
a.
$$2.2 \times 10^3 \times 3 \times 10^2 = (2.2 \times 3) \times 10^{3-2} = 6.6 \times 10^1 = 66$$

b.
$$(4.4 \times 10^4) \div (2.2 \times 10^3) = \left(\frac{4.4}{3.3}\right) \times 10^{(4-3)} = 3 \times 10^1 = 20$$

c.
$$22 \times 10^4 + 2 \times 10^3 = 22 \times 10^3 + 2 \times 10^3 = (22 + 2) \times 10^3 = 24 \times 10^3$$

d.
$$6000/(2 \times 10^4) = (6 \times 10^3) \div (2 \times 10^4) = (6) \times 10^{3-4} = 3 \times 10^{4} = 0.3$$

5. Complete the following table by filling in the blanks:

	a.	b.	c.	d.	e.
Number Form	3.3 x 10 ⁶ Ω	5 x 10 ⁻³ A	0.37	500 000 A	9000 V
Engineering Prefix	3.3 MQ	5mA	300 mV	200 kV	9kV

- What is the symbol of AND value for the following prefixes? Eg milli has symbol m and a value of 10⁻³
 - a. Kilo $-(k)-10^3$
 - b. Pico (p) 10-12
 - c. Mega (M) 106
 - d. Nano (n) 10-9
- 7. Round off the following numbers to 2 decimal places:
 - a. 733.3333 = 733.33
 - b. 6.5555 = 6.56
 - c. 0.2279 = 0.23
 - d. 0.00044332 = O.OO
 - e. 44,999 = 45.00
- 8. Round off the numbers in question 7 to 3 (three) significant figures:
 - a. 733.3333 = 733
 - b. 6.5555 = 6.56
 - c. 0.2279 = 0.228
 - d. 0.00044332 = 0.000443
 - e. 44.999 = 45.0
- 9. Convert the following decimals and fractions to percentages, and vice-versa.
 - a. $\frac{1}{4} = \frac{1}{4} \times 100 = 0.25 \times 100 = 25 \%$
 - b. 0.45 = 0.45 x 100 = 45%
 - c. $50\% = \frac{50}{100} = 0.5$
 - d. $110\% = \frac{110}{100} = 1.1$
 - e. $10\% = \frac{10}{100} = 0.1$
 - f. $1/3 = \frac{1}{3} \times 100 = \frac{33}{3} \%$

- 10. For the following, express the first quantity as a percentage of the second:
 - a. 7 students, 10 students = $\frac{7}{10} \times 100 = 0.7 \times 100 = 70\%$
 - b. $100 \text{ V}, 1 \text{ kV} = \frac{100}{1000} \times 100 = 0.1 \times 100 = 10\%$
 - c. $10 \text{ mA}, 1A = \frac{0.01}{1000} \times 1000 = \frac{1}{1000} \%$
 - d. 600 Ω, 50 Ω = 600 × 100 = 120%
- 11. Calculate the lower and upper values for the actual resistance of resistors with the following nominal values and tolerances:
 - Tances: 5×1000 = 50Ω; Lower limit = 1000-50= 950Ω; (1000 = 1000Ω). a. 1000 Ω, ±5%
 - b. 470 k Ω, ±10% 10×470×103 = 47 k Ω, Lower limit=470-47=423 kΩ Upper limit = 470+47=517ka
- 12. Where is the evacuation point for the Electrical Mathematics classroom (in case of emergency)?

At the toothall grounds in front of the building. *In every test you may find CHS questions. If you are unsure how to answer them ask your burer.

- 13. Using a calculator, calculate the values of the following expressions AND also manually estimate an approximate value for these expressions. Show how the estimate was obtained.
 - 3.2 x 4.77 + 72.2

Fstimation: 3x5+72=15+72=87

Calculation: 87.464

b. π 6.9²

Estimation: 3x72 = 3x49 = 147

Calculation: 149.57

END OF TRIAL TEST/ASSIGNMENT - Check your work! -----