ELECTRICAL MATHEMATICS TEST 2 - TRIAL TEST/ASSIGNMENT

Notes:

- This test covers substitutions, basic algebra, and evaluation of subject/transposition of
- The actual test will be closed book, calculator permitted.
- It is ESSENTIAL to show working/steps, where asked, otherwise no marks can be given.
- Evaluate the following expressions:

a.
$$a = bc$$
 where $b = 3.08$ and $c = 39.5$
 $C = 3.08 \times 39.5 = 121.66$

b.
$$X = \frac{Y}{Z}$$
 where $Y = 0.00043$ and $Z = 77.9$

c. R_T = R₁ + R₂ + R₃ where R₁ = 820, R₂ = 220 and R₃ = 470

d. m = $(u + v)^2$ s where u = 40.4, v = 37.0 and s = 1.23 x 10^{-3}

$$M = (40.4 + 37.0)^2 \times 1.23 \times 10^{-3} = 77.4^2 \times 1.23 \times 10^{-3} = 5.99 \times 10^{-3} \times 1.23 \times 10^{-3} = 7.37$$

e. $R = (6.0 - ST)^3$ where $S = 5.7 \times 10^4$ and $T = 2.87 \times 10^3$

R =
$$(6.0-5T)^3$$
 where $8-5.7 \times 10^4$ and $T=2.87 \times 10^3$
 $R = (6.0-5.7 \times 10^4 \text{ y}^2 2.87 \times 10^4)^3 = (6.0-16.359 \times 10^4)^3 = (6.0-1.6359)^3 = 4.3641^3 = 83.12$

2. Transpose each of the following formulae, making the variable in brackets the subject of the equation.

a.
$$V = IR$$

$$\frac{\sqrt{1}}{1} = \frac{\sqrt{1}}{\sqrt{1}} \implies \frac{\sqrt{1}}{1} = R \implies R = \frac{\sqrt{1}}{\sqrt{1}}$$

b.
$$I = Q$$
 (t)

c.
$$R_T = R_1 + R_2 + R_3$$
 (R₂)

$$\frac{P}{R} = \frac{1^{2}R}{R} \Rightarrow \frac{P}{R} = \frac{1^{2}R}{R} \Rightarrow \frac{P}{R} = \frac{1}{R} \Rightarrow \frac{P}{R} \Rightarrow \frac{P}$$

$$\begin{array}{c} e. \ \, \displaystyle \underbrace{\frac{1}{R_{P}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}}_{R_{1}} \quad \, (R_{1}) \\ \frac{1}{R_{Q}} - \frac{1}{Q_{2}} = \frac{1}{Q_{2}} \\ \frac{1}{R_{Q}} - \frac{1}{Q_{2}} = \frac{1}{Q_{2}} \\ \frac{1}{R_{Q}} = \frac{1}{Q_{2}} - \frac{1}{Q_{2}} \\ R_{Q} = \frac{Q_{Q} R_{Q}}{Q_{Q} R_{Q}} \end{array}$$

3. Express the following in their simplest form:

a.
$$4m^2 - 7mn + 3m^2 - 2mn + 5 = 7m^2 - 9mn + 5$$

b.
$$(a-b)-(a+b)$$

 $a-b-a-b = -2b$

c.
$$(a-b)(a+b)$$

 $Q^2 + gb - Qb - b^2 = \underline{a^2 - b^2}$

d.
$$(3x-4y)(3x-4y)+24xy$$

 $9x^2-12xy-12xy+16y^2+24xy=9x^2+16y^2$

e. 24xyz ÷ 12y

4. Solve the following equations for the unknown:

a.
$$5 - \frac{x - 3}{2} = 0$$

$$\frac{5 \times 2}{2} - \frac{X - 3}{2} = \frac{0 \times 2}{2}$$

$$(0 - (X - 3) = 0)$$

$$\frac{5 \times 2}{2} - \frac{3}{2} = \frac{0 \times 2}{2}$$

b.
$$\frac{3}{m} + \frac{2}{m} = \frac{15}{6}$$

$$\frac{(2+2)}{100} = \frac{15}{6}$$

$$M = \frac{8 \times 6}{150} = \frac{6}{3} = 2$$

c.
$$\frac{4}{5y+2} = \frac{7}{7y-3}$$

 $(5y+2) \times 7 = 4 \times (7y-3)$
 $35y-38y=-12-14$
 $7y=-26$
 $y=-\frac{26}{7}=-3\frac{5}{7}$

5. Given
$$I = \frac{I_1(R_1 + R_2)}{R_2}$$

a. Evaluate I when
$$I_1 = 240 \text{mA}$$
, $R_1 = 680 \Omega$ and $R_2 = 2.2 k \Omega$

$$T = \frac{240 \times 10^{-3} (680 + 2200)}{2200} = \frac{240 \times 10^{-3} \times 2.282 \times 10^{3}}{2200} = \frac{691.2}{2200} = 3.44 \times 10^{-3} \text{A} = 3.14 \text{ m A}$$

b. Transpose to find R₂

$$IR_{2} = I_{1}(R_{1} + R_{2})$$

$$IR_{2} = I_{1}R_{1} + I_{1}R_{2}$$

$$IR_{2} - I_{1}R_{2} = I_{1}R_{1}$$

$$(I - I_{1})R_{2} = I_{1}R_{1}$$

c. Evaluate R_2 when I = 1.07 A, $I_1 = 970$ mA and $R_1 = 82$ k Ω

$$R_{2} = \frac{795.4 \times 10^{2} \times 10^{2}}{1.07 - 10.1} = \frac{795.4 \times 10^{2}}{10.1} = \frac{795.4 \times 10^{2}}{$$

6. Solve for x in each of the following:

a.
$$2v = 3u + ax$$

 $2V - 3U = QX$
 $QX = 2V - 3U$
 $X = \frac{2V - 3U}{QX}$

b.
$$\frac{k}{x^2} = 5w + 2$$

$$\chi^2 (5w + 2) = K$$

$$\chi^2 = \frac{K}{5w + 2}$$

$$\chi = \pm \sqrt{\frac{k}{5w + 2}}$$
c. $y = n - \sqrt{\frac{x - a}{3}}$

$$\sqrt{\frac{x - a}{3}} = N - y$$

$$(\sqrt{\frac{x - a}{3}})^2 = (n - y)^2$$

$$\chi - a = 3(n - y)^2$$

$$\chi = 3(n - y)^2 + a$$