ELECTRICAL MATHEMATICS TEST 5 – TRIAL TEST/ASSIGNMENT

Notes:

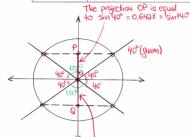
- Test covers trigonometric functions, logarithms and exponentials, complex numbers and vectors.
- The actual test will be closed book, with calculator and ruler required.
- It is ESSENTIAL to show working/steps, where asked, otherwise no marks can be given.
- Given that π radians = 180°, express:

 1.1 55° in radians

 55° \times $\frac{\pi}{180}$ = 0.96 (rad)

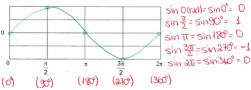
 1.2 $\frac{2}{3}\pi$ radians as degrees $\frac{2}{3}\pi$ (rad) = $\frac{2\pi}{3}\times\frac{180}{\pi}$ = 120°

 1.3 45° in radians (expressed in terms of π)


1.4 1.7 radians as degrees

Use your calculator to determine the trigonometric ratios of the following, giving answers to 3 significant figures:

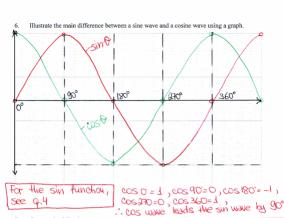
2.1 tan 21°	0.384	
2.2 cos 225°	-0.707	Re careful!
$2.3 \sin \frac{3\pi}{4} \text{ rad}$	0.707	Calculator
$2.4 \cos\left(\frac{4}{3}\pi \operatorname{rad}\right)$	-0.5	Be careful! Calculator (wast be set) in <u>radian</u> mode.
2.5 tan(-21°)	- 0.384	


Given that sin 40° = 0.6428, use the unit circle (NOT calculator) to determine:

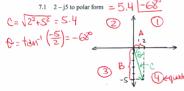
3.1	sin 140°	0.6428 (same as sin 40°)
3.2	sin 220°	-0.6428 (same as sin (-40°))
3.3	sin 320°	-0.6428 (same as sin (-40°))

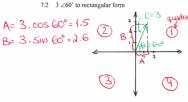
The projection OQ is equal to sin (-40°) = sin 220° = sin 320° = s

4. Sketch the graph of $y = \sin \theta$ for $0 \le \theta \le 2\pi$


State the amplitude of the following functions:

$5.1 y = 4 \sin 4\theta$	4	
$5.2 y = 0.4 \cos 12\theta$	0.4	
y=Asin0	$y = A \cos \theta$	
Complitude—) (peak)		
(peak)		


Lubomir Tchervenkov


Page 2 of 7

www.Lubomir.name/engineering

Convert the following:

Page 3 of 7

Conversion Formulas
Polar to Rectangular:
C 10 = A+jB
A = C.COSO
B = C.SINO

Rectangular to Bldr: A+jB=CLB $C=\sqrt{A^2+B^2}$ $B=tav^{-1}\frac{B}{A}$

These formulus only apply for quadrants
I and 4. For quadrants
I and 5 (rarely used)
you may need to add or suid need to add or suid need to add and the add and t

www.Lubomir.name/engineering

- Express the following as indicated:
 - log₃27=3 in exponential form
 - 8.2 $\log_2 \frac{1}{4} = -2$ in exponential form

$$\lambda^{-2} = \frac{1}{4}$$

8.3 $10^m = n$ in logarithmic form

$$log n = M$$

8.4 $8^{-\frac{2}{3}} = \frac{1}{4}$ in logarithmic form

$$\log_8 \frac{1}{4} = -\frac{2}{3}$$

- Evaluate: 9.
 - 91 log, 81

$$x = \log_3 8$$
.
 $3^x = 81$
 $3^x = 34$

$$N_{\partial} = N_{\tau}$$

10. Solve the following exponential equations:

10.1
$$4^{4} = 8$$

$$(2^{3})^{3} = 2^{3}$$

$$(2)^{2} = (2)^{3}$$

$$3 = 3$$

$$10.2 \frac{1}{4^{4}} = 8$$

$$4^{-0} = 8$$

$$(2^{3})^{-0} = 2^{3}$$

$$3^{2-0} = 2^{3}$$

$$3^{2} = (3^{3})^{2-x}$$

$$3^{2} = (3^{3})^{2-x}$$

$$2 = 3(2-x)$$

$$3 = 3($$

Make the variable in the brackets the subject of the formula in the following:

11.1
$$a = b^n$$
 (n)

$$11.2 \quad y = \log_{10} x \quad (x)$$

Simple conversion to an exponential form

11.3
$$\log_2(\frac{a}{b}) = n$$
 (a)

$$2^N = \frac{d}{b}$$

11.4
$$Q = Q_0 \theta^{\mu}$$
 (f)

$$e^{kt} = \frac{Q}{Q_0}$$

$$e^{kt} = \log_{e}(\frac{Q}{Q_0})$$

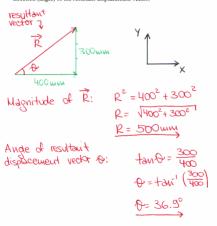
$$kt = \ln(\frac{Q}{Q_0})$$

$$t = \frac{1}{k}\ln(\frac{Q}{Q_0})$$

- The power gain of an amplifier, in decibels, is given by G = 10log₁₀ P₀, where P₁ is the input power and P₀ is the output power.
 - 12.1 Make Po the subject of the formula.

$$\frac{d}{dt} = \frac{100 \left(\frac{R}{P_i}\right)}{100}$$

$$\frac{d}{dt} = \frac{100 \left(\frac{R}{P_i}\right)}{100}$$


$$\frac{d}{dt} = \frac{R}{P_i}$$

$$10^{\frac{1}{100}} = \frac{R}{P_i}$$

$$R_0 = P_i \times 10^{\frac{1}{100}}$$

12.2 Hence find the output power from an amplifier having a 45dB gain and an input signal power of 10 mW (answer correct to 2 significant figures)

13. A robot arm needs to move 400 mm on the x-axis and 300 mm on the y-axis. Sketch these displacement vectors and the resultant displacement vector. Calculate the magnitude AND direction (angle) of the resultant displacement vector.

----- END OF TRIAL TEST/ASSIGNMENT - Check your work! -----